

Security Evaluation of the Z-Wave Wireless Protocol

Behrang Fouladi

SensePost UK Ltd.

behrang@sensepost.com

Sahand Ghanoun

research@sahand.net

Abstract— The Z-Wave wireless communication protocol has

been widely used in home automation and wireless sensors

networks. Z-Wave is based on a proprietary design and a sole

chip vendor. There have been a number of academic and

practical security researches on home automation systems based

on ZigBee and X10 protocols, however, no public vulnerability

research on Z-Wave could be found prior to this work.

In this paper, we analyze the Z-Wave protocol stack layers and

design a radio packet capture device and related software named

Z-Force to intercept Z-Wave communications. This device

enables us to decode different layers of the Z-Wave protocol and

study the implementation of encryption and data origin

authentication in the application layer. We then present the

details of a vulnerability discovered using Z-Force tool in AES

encrypted Z-Wave door locks that can be remotely exploited to

unlock doors without the knowledge of the encryption keys.

Index Terms— Z-Wave, Home Automation, Encryption, Data

Authentication, Protocol Analysis

I. INTRODUCTION

Home automation systems provide a centralized control and

monitoring function for heating, ventilation and air

conditioning (HVAC), lighting and physical security systems.

The central control panel and various household devices such

as security sensors and alarm systems are connected to each

other to form a mesh network over wireless or wired

communication links and act as a “smart home”. The first

generation of home automation systems such as X10 used

existing power lines in the buildings as the communication

medium, but as well as limited bandwidth, they were

susceptible to signal loss and electrical interference. Wireless

home automation systems overcome these limitations of the

power line systems and provide easier expansion and

interconnectivity of different devices. However, as the radio

packets can be easily intercepted or injected by the attackers,

protecting the confidentiality and integrity of wireless

communication is of great importance in these systems. As

such, security services such as key establishment, encryption,

frame integrity protection and device authentication were

included in the specifications of open wireless protocols such

as ZigBee. Although these security services are built on top of

the recognized cryptographic algorithms such as Advanced

Encryption Algorithm (AES), successful attacks against them

have been demonstrated that exploit the implementation

vulnerabilities or insecure key management practices [1] [2].

Z-Wave protocol developed by Sigma Designs, Inc.

provides packet encryption, integrity protection and device

authentication services and is gaining momentum against

ZigBee protocol with regards to home automation. This is

partly due to interoperability of devices and shorter time to

market on the vendor side. Another benefit is that it is less

subjected to signal interference compared to the ZigBee

protocol, which operates on the widely populated 2.4 GHz

band shared by both Bluetooth and Wi-Fi devices. The

protocol specification and software development kit (SDK) [4]

are not open and only available to the device manufacturers

(OEMs) who have signed an NDA with Sigma Designs. The

SDK costs between 1500 to 3500 US dollars and the NDA

prevents OEMs from disclosing the content of the SDK

publically. The aim of this research is to build a low cost Z-

Wave packet capture and injection tool which facilitates the

security testing of home automation systems as well as aides

vulnerability discovery of the Z-wave security products such as

access control systems and door locks.

II. Z-WAVE PROTOCOL STACK ANALYSIS

Z-Wave operates in the Industrial, Scientific and Medical

radio frequency band (ISM). It transmits on 868.42 MHz

(Europe) and 908.42 MHz (United States) frequencies

designed for low-bandwidth data communications in embedded

devices such as security sensors, alarms and home automation

control panels. An open source implementation of Z-Wave

protocol stack, open-zwave [4], is available but it does not

support the security services as of yet.

Figure 1 - Z-Wave protocol layers

The open-zwave software uses a Z-Wave controller device

as the radio modem to communicate with the network nodes.

The controller devices can only manage one Z-Wave network

at a given time identified by a unique 32 bits Home ID. The

Home ID value is written to the controller’s Z-Wave chip by

the manufacturer and cannot be changed by the controller

software. This prevents controller devices from tuning into

neighbor Z-Wave networks. Furthermore, the firmware of

controller devices did not support promiscuous mode to

intercept Z-Wave network packets of its own home network.

These limitations led us to build our own Z-Wave radio

modem for the purpose of this research as outlined in the

following section.

A. Physical Layer

The ITU-T recommendation G.9959 [5] contains physical

and MAC layer specifications for sub GHz radio

communication including the Z-Wave protocol. It also outlines

some aspects of the Z-Wave transport layer such as frame

formats and Beam control which is necessary to communicate

with Z-Wave door locks.

We used the Texas Instruments CC1110 radio transceiver

kit [6] that comes with SmartRF Studio [7] software to

determine the radio configuration parameters required by the

CC1110 chip in order to receive and transmit Z-Wave packets

with 9.6 Kbps and 40 Kbps data transfer rates.

9.6 kbps (Europe) Configuration

Data rate 9.6 kbps

Symbol rate 19.2 kBaud

Center frequency 868.42 MHz

Modulation scheme FSK

Coding Manchester

Separation 40 KHz

Table 1 - 9.6 Kbps radio configurations

40 kbps (Europe) Configuration

Data rate 40 kbps

Symbol rate 40 kBaud

Center frequency 868.40 MHz

Modulation scheme FSK

Coding NRZ

Separation 40 KHz

Table 2- 40 Kbps radio configurations

The above parameters were used to implement Z-Wave

physical layer in CC1110 chip firmware and to develop a low

cost Z-Wave packet interception and injection tool, which we

named as Z-Force. It is worth noting that there were some

discrepancies between RF signal properties specified in ITU.T

G.9959 and those listed in the table above. In order to

communicate with the devices available to us, we observed the

modulation scheme for 9.6 kbps data rate needs to be G-FSK.

In addition to that we noticed the symbol polarity is inverted in

40 kbps profile which means all the frame bits have to be

inverted before transmission or after receipt of a frame. Some

other Texas Instrument transceivers can automatically perform

this action in hardware. For more information on the individual

CC1110 register settings, refer to Z-Force documentation. A

screenshot of Z-Force user interface is included in Appendix B.

B. Transport Layer

Z-Wave transport layer is mainly responsible for

retransmission, packet acknowledgment, waking up low power

network nodes (Beaming) and packet origin authentication.

Each Z-Wave frame in this layer contains the 32 bits Home ID

that identifies the associated Z-Wave network, 8 bits source

node ID, frame header that defines frame type (single-cast,

multi-cast, routed) and control flag such as low power

transmission, 8 bits payload length followed by the payload

and the 8 bits frame checksum value. Transport layer relies on

a frame checksum value to detect and discard erroneous

frames. The Z-Wave protocol uses the following checksum

algorithm from the ITU-T G.9959 standard:

BYTE GenCheckSum(BYTE *Data,BYTE Length){

 BYTE CheckSum = 0xFF;

 for (; Length > 0; Length--){

 CheckSum ^= *Data++;}

return CheckSum;}

An overview of Z-Wave transport frame format and fields

is shown in figure 2. Frame retransmission occurs when an

acknowledgement frame was not received from the destination

node before the frame expiration time. Beam frames that are

used to wake up battery powered Z-Wave nodes are controlled

by the transport layer. Some battery powered Z-Wave devices

including door locks needs to listen for the incoming

commands from the network controller, but keeping their radio

on will drain the battery quickly. In order to preserve the

battery power, the device enters sleep mode and periodically

turns on its radio, looking for beam frames. The transmitting

node sends several back to back beam frames in 100ms

intervals to ensure that the sleeping device will notice one of

those frames when waking up and therefore it will keep its

radio on to receive subsequent transmissions.

Figure 2 –Z-Force radio transceiver

When in secure transmission mode, an 8-byte frame

authentication header is added to the end of the frame just

before the frame checksum filed. No public specifications for

the Z-Wave origin authentication header were available before

our research. By using Z-Force tool and performing binary

code analysis of a Z-Wave controller appliance firmware we

found the cryptographic algorithm and parameters to calculate

this header value. Z-Wave data origin authentication and

encryption algorithms are discussed in detail in section III.

C. Network Layer

Z-Wave protocol forms a mesh network with one primary

controller device and up to 232 nodes each of which can act as

a packet repeater – with the exception of battery powered

nodes – to route Z-Wave data even when the two

communicating parties cannot establish a direct radio link

between each other. In order to determine the best route to a

destination node, each device in the Z-Wave network maintains

a network topology that indicates all other devices in

proximity. When device locations at home changes or they are

removed from the network, this topology can become wrong

and cause routing issues in the network. The Z-Wave protocol

supports automatic topology discovery and healing to detect

new network location and routes and optimize the routing

tables. Although, Z-Wave routing mechanism and topology

discovery might be subjected to attacks such as unauthorized

modification of routing tables by rouge nodes [8], we did not

perform security tests in network layer, as our research was

focused on the encryption and origin authentication that are

handled by transport and application layers.

D. Application Layer

This layer is responsible for parsing the frame payload and

decoding the Z-Wave commands and supplied parameters. If

the node was a Z-Wave controller device the decoded

command and associated parameters will be forwarded to the

controller software running on the home control computer or

appliance. Otherwise they will be processed by the device

firmware that is developed using Z-Wave SDK and running on

the Z-Wave chip. As demonstrated in figure 2, the payload

frame starts with one byte command header specifying that the

command is single/multi or broadcast followed by the

command class. Z-Wave command classes define device

functionality such as door lock, alarm sensor, binary sensor,

heating thermostat and etc. Each command class can consist of

multiple commands. For instance,

COMMAND_CLASS_ALARM (defined as 0x71) includes

CMD_GET (0x04) and CMD_REPORT (0x05), the first of

which is sent by the controller to the alarm to get the current

state of the alarm and the second one is sent to the controller

when the alarm is triggered. The open-zwave project has listed

command class and command codes for various Z-Wave

devices. It’s important to note that this list does not contain the

commands processed by Z-Wave firmware such as network

topology discovery or network inclusion and exclusion

commands.

Using the Z-Force tool we noticed that when home network

nodes communicate over secure Z-Wave, the frame payload is

encrypted and followed by 8 bytes authentication field. The

feature list of the Z-Wave door lock stated that it was using 128

bits AES encryption, but we observed that the encrypted frame

payload length is less than the cipher block length (128 bits).

This suggested that the device has AES algorithm in one of

Cipher Feedback (CFB) or Output Feedback (OFB) modes that

can convert block ciphers to variable length stream ciphers. In

the following section we validate this hypothesis as well as the

frame authentication algorithm.

III. VULNERABILITY ANALYSIS

In order to discover design or implementation

vulnerabilities in Z-Wave secure communication, it was

essential to uncover the details of frame encryption and

authentication algorithms. We analysed the Z-Wave radio

frames and firmware binary of a home automation appliance in

the following scenarios:

a) Door lock inclusion into the Z-Wave network for the

first time: encryption key exchange takes place between the

controller appliance and the door lock to establish a shared

symmetric key.

b) Sending lock/unlock commands to the Z-Wave door

lock: the command is encrypted using the established

encryption key and authentication value is also appended to the

frame.

c) Door lock inclusion after controller appliance factory

rest: The factory reset will erase previously established key

from the appliance but the door lock will still hold the old

encryption key.

Analysis of scenario (a) indicated that the encryption key is

not exchanged in clear text. This key is generated using the

hardware based pseudo random number generator (PRNG) on

Figure 3 –Z-Wave frame format in different layers

the Z-Wave chip and then is encrypted by using a hard coded

temporary default key in chip’s firmware before being sent to

the door lock. The value of this temporary key was found to be

16 bytes of zero. Although an attacker could intercept the

encrypted key exchange frame, and decipher it using the hard-

coded key this attack vector was not interesting to us, as the

key exchange only happens at system initial setup time or re-

installation that limits the attack time window. Furthermore Z-

Wave devices can switch their radio to low power transmission

mode during key exchange process to make packet interception

attack much more difficult.

After successful exchange of the network key (��) between

the controller appliance and the door lock, they both derive two

new 128-bit keys: frame encryption key (��) and data origin

authentication key (��) by using AES encryption in ECB

mode as following:

 �� = ���-�����
(��		
��)

�� = ���-�����
(��		
��)

��		
�� and ��		
�� values were found to be 16-byte

values hardcoded into the Z-Wave firmware as highlighted in

Appendix A.

Z-Wave data origin authentication is based on the cipher

block chaining message authentication code (CBC-MAC)

technique that can calculate a message authentication code

(MAC) from a block cipher algorithm such as AES. The

generated MAC value ensures that the Z-Wave frame is not

tampered with or corrupted during the transmission (data

integrity) and that it has been sent by the node claiming to be

the message source (origin authentication). In order to prevent

packet replay attacks, 64-bit nonce values generated by the Z-

Wave chip’s PRNG are used during MAC calculation as

described by the following formula:

��� = ���-��������(IV,SH||SRC||DST||LEN||C)

Initialization vector (IV) is 16 bytes long with bytes zero to

seven set by the PRNG and bytes 7 to 15 set to the nonce value

received from the destination node. The security header (SH) is

a one byte value that determines the type of secure messages:

nonce request (0x40), nonce reply (0x80) and encrypted data

(0x81). SRC and DST are the source and destination node IDs,

LEN is the encrypted payload length in bytes and finally C is

the encrypted payload bytes that are generated by using AES

algorithm in OFB mode:

� = ���-����
(IV,P)

P is the plain text variable size payload that contains Z-

Wave command header, class, ID and parameters.

With the above knowledge of Z-Wave encryption and

authentication, we developed a door lock key exchange

module for the Z-Force tool that enabled us to control all

steps of the key exchange protocol (Figure 3), run it with

our own network key and observe the responses from the

door lock. After running a few tests including scenario (c)

that was mentioned earlier in this section, we identified a

critical protocol implementation vulnerability that could

allow an attacker to reset the established network key on a

target Z-Wave door lock to a known value of his choice and

then issue unauthorised commands.

Figure 4 – Key exchange protocol

The root cause of this issue was lack of state validation

in the key exchange protocol handler programmed in the Z-

Wave door lock firmware. This handler code is called when

the door lock receives the key exchange start packet which

payload is 0x98 0x04 from the home controller device. At

this point, the handler function needs to load a shared

encryption key so that it can decrypt the rest of key

exchange packets received from the controller and be able

to encrypt its response packets. However before using the

hardcoded temporary key (16 bytes of zero) for this

purpose, the door lock should check the state of the current

shared key in its EEPROM and load the previously

provisioned network key if one already exists. On contrary,

we discovered that the Z-Wave door lock does not perform

this important state validation. As a result, a remote

attacker who has detailed knowledge of the key exchange

protocol and is in possession of a Z-Wave packet injection

tool similar to Z-Force can force the target Z-Wave door

lock to overwrite its current shared network key with that

of the attacker. This would enable the attacker to send

secure Z-Wave messages to perform unauthorised actions

such as unlocking the door or changing users’ PIN codes.

We successfully demonstrated this attack against a 128 bit

AES encrypted door lock using Z-Force kit that was

configured to operate in 868.42 MHz frequency and 40Kbps

data transfer rate.

I. IMPACT

Successful exploitation of the aforementioned vulnerability

can enable an attacker to take full control of the affected Z-

Wave door locks and possibly other secure devices in a

building. If the compromised door lock attempts to send “Door

is Open” event to the controller after being unlocked by the

attacker, the received packet will contain an invalid frame

authentication field and will be discarded by the controller

software. Therefore, the home residents or building manager

will not be alerted about the intrusion.

II. CONCLUSION

We have analysed Z-Wave proprietary protocol and

uncovered the details of its encryption, authentication and key

exchange protocols. Based on this knowledge we developed a

low cost Z-Wave packet interception and injection tool that

enabled us to perform vulnerability discovery on the Z-Wave

door locks. Using this tool, we have demonstrated an

implementation vulnerability in Z-Wave key exchange

protocol that could be exploited to take full control of a target

Z-Wave door lock by only knowing the Home and node IDs of

the target device, both of which can be identified by observing

the Z-Wave network traffic over a short period of time due to

the frequent polling of devices in a Z-Wave network, for

example to get status or battery level of the device. This

vulnerability was not due to a flaw in the Z-Wave protocol

specification, but because of an implementation error in

disabling the use of temporary key after initial network key

exchange during inclusion of a node to the network.

We have communicated the details of this vulnerability to

the vendor who has conducted a security review of Z-Wave

specification and SDK to ensure that they cover correct

handling of the discovered vulnerability. Finally, Sigma

Designs has taken action to prevent such implementation flaws

to reach the market in the future by adding additional security

test cases to the certification test suite.

We also recommend Z-Wave device manufacturers to

examine their firmware code for this vulnerability. Due to the

flexibility of Z-Force tool, it can also be used to identify other

vulnerabilities for example memory corruptions in closed

source Z-Wave firmware via fuzz testing.

ACKNOWLEDGMENT

We would like to thank Sigma Designs for their urgent

response and verification of the reported vulnerability.

REFERENCES

[1] Kennedy, D., & Simon, R. (2011). Pentesting over Power

lines. Defcon 2011.

[2] Wright, J. (2011). Practical ZigBee Exploitation

Framework. toorcon 2011.

[3] Sigma Designs. (n.d.). Z-Wave development Kit. Retrieved

June 2013, from Sigma Designs public web site:

http://www.sigmadesigns.com/uploads/documents/zwave_

dev_kit_br.pdf

[4] OpenZwave. (n.d.). Retrieved June 2013, from open-

zwave Google code site: https://code.google.com/p/open-

zwave/

[5] International Telecommunication Union (ITU). (2012).

G.9959 : Short range narrow-band digital

radiocommunication transceivers - PHY and MAC layer

specifications.

[6] Texas Instruments. (2009, December). CC1110 Mini

Development Kit. Retrieved from

http://www.ti.com/tool/cc1110dk-mini-868

[7] Texas Instruments. (2013, May). SmartRF Studio.

Retrieved from http://www.ti.com/tool/smartrftm-studio

[8] Morais, A., & Cavalli, , A. (2011). Route Manipulation

Attack in Wireless Mesh Networks. Advanced Information

Networking and Applications (AINA).

APPENDIX A. KEY DERIVATION USING HARD-CODED PASSWORD IN A Z-WAVE FIRMWARE

APPENDIX B. Z-WAVE FRAMES INTERCEPTED BY Z-FORCE

