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Abstract— The Z-Wave wireless communication protocol has 

been widely used in home automation and wireless sensors 

networks. Z-Wave is based on a proprietary design and a sole 

chip vendor. There have been a number of academic and 

practical security researches on home automation systems based 

on ZigBee and X10 protocols, however, no public vulnerability 

research on Z-Wave could be found prior to this work. 

In this paper, we analyze the Z-Wave protocol stack layers and 

design a radio packet capture device and related software named 

Z-Force to intercept Z-Wave communications.  This device 

enables us to decode different layers of the Z-Wave protocol and 

study the implementation of encryption and data origin 

authentication in the application layer. We then present the 

details of a vulnerability discovered using Z-Force tool in AES 

encrypted Z-Wave door locks that can be remotely exploited to 

unlock doors without the knowledge of the encryption keys. 

Index Terms— Z-Wave, Home Automation, Encryption, Data 

Authentication, Protocol Analysis 

I. INTRODUCTION 

Home automation systems provide a centralized control and 

monitoring function for heating, ventilation and air 

conditioning (HVAC), lighting and physical security systems. 

The central control panel and various household devices such 

as security sensors and alarm systems are connected to each 

other to form a mesh network over wireless or wired 

communication links and act as a “smart home”. The first 

generation of home automation systems such as X10 used 

existing power lines in the buildings as the communication 

medium, but as well as limited bandwidth, they were 

susceptible to signal loss and electrical interference. Wireless 

home automation systems overcome these limitations of the 

power line systems and provide easier expansion and 

interconnectivity of different devices. However, as the radio 

packets can be easily intercepted or injected by the attackers, 

protecting the confidentiality and integrity of wireless 

communication is of great importance in these systems. As 

such, security services such as key establishment, encryption, 

frame integrity protection and device authentication were 

included in the specifications of open wireless protocols such 

as ZigBee. Although these security services are built on top of 

the recognized cryptographic algorithms such as Advanced 

Encryption Algorithm (AES), successful attacks against them 

have been demonstrated that exploit the implementation 

vulnerabilities or insecure key management practices [1] [2]. 

Z-Wave protocol developed by Sigma Designs, Inc. 

provides packet encryption, integrity protection and device 

authentication services and is gaining momentum against 

ZigBee protocol with regards to home automation. This is 

partly due to interoperability of devices and shorter time to 

market on the vendor side. Another benefit is that it is less 

subjected to signal interference compared to the ZigBee 

protocol, which operates on the widely populated 2.4 GHz 

band shared by both Bluetooth and Wi-Fi devices. The 

protocol specification and software development kit (SDK) [4] 

are not open and only available to the device manufacturers 

(OEMs) who have signed an NDA with Sigma Designs. The 

SDK costs between 1500 to 3500 US dollars and the NDA 

prevents OEMs from disclosing the content of the SDK 

publically. The aim of this research is to build a low cost Z-

Wave packet capture and injection tool which facilitates the 

security testing of home automation systems as well as aides 

vulnerability discovery of the Z-wave security products such as 

access control systems and door locks. 
        

II. Z-WAVE PROTOCOL STACK ANALYSIS 

Z-Wave operates in the Industrial, Scientific and Medical 

radio frequency band (ISM). It transmits on 868.42 MHz 

(Europe) and 908.42 MHz (United States) frequencies 

designed for low-bandwidth data communications in embedded 

devices such as security sensors, alarms and home automation 

control panels. An open source implementation of Z-Wave 

protocol stack, open-zwave [4], is available but it does not 

support the security services as of yet.  

 

Figure 1 - Z-Wave protocol layers 

The open-zwave software uses a Z-Wave controller device 

as the radio modem to communicate with the network nodes. 

The controller devices can only manage one Z-Wave network 

at a given time identified by a unique 32 bits Home ID. The 

Home ID value is written to the controller’s Z-Wave chip by 



 

 

the manufacturer and cannot be changed by the controller 

software. This prevents controller devices from tuning into 

neighbor Z-Wave networks. Furthermore, the firmware of 

controller devices did not support promiscuous mode to 

intercept Z-Wave network packets of its own home network. 

These limitations led us to build our own Z-Wave radio 

modem for the purpose of this research as outlined in the 

following section. 

A. Physical Layer 

The ITU-T recommendation G.9959 [5] contains physical 

and MAC layer specifications for sub GHz radio 

communication including the Z-Wave protocol. It also outlines 

some aspects of the Z-Wave transport layer such as frame 

formats and Beam control which is necessary to communicate 

with Z-Wave door locks.  

We used the Texas Instruments CC1110 radio transceiver 

kit [6] that comes with SmartRF Studio [7] software to 

determine the radio configuration parameters required by the 

CC1110 chip in order to receive and transmit Z-Wave packets 

with 9.6 Kbps and 40 Kbps data transfer rates.      

 

9.6 kbps (Europe) Configuration 

Data rate 9.6 kbps 

Symbol rate 19.2 kBaud 

Center frequency 868.42 MHz 

Modulation scheme FSK 

Coding Manchester 

Separation 40 KHz 

Table 1 - 9.6 Kbps radio configurations 

40 kbps (Europe) Configuration 

Data rate 40 kbps 

Symbol rate 40 kBaud 

Center frequency 868.40 MHz 

Modulation scheme FSK 

Coding NRZ 

Separation 40 KHz 

Table 2- 40 Kbps radio configurations 

The above parameters were used to implement Z-Wave 

physical layer in CC1110 chip firmware and to develop a low 

cost Z-Wave packet interception and injection tool, which we 

named as Z-Force. It is worth noting that there were some 

discrepancies between RF signal properties specified in ITU.T 

G.9959 and those listed in the table above. In order to 

communicate with the devices available to us, we observed the 

modulation scheme for 9.6 kbps data rate needs to be G-FSK. 

In addition to that we noticed the symbol polarity is inverted in 

40 kbps profile which means all the frame bits have to be 

inverted before transmission or after receipt of a frame. Some 

other Texas Instrument transceivers can automatically perform 

this action in hardware. For more information on the individual 

CC1110 register settings, refer to Z-Force documentation. A 

screenshot of Z-Force user interface is included in Appendix B. 

B. Transport Layer 

Z-Wave transport layer is mainly responsible for 

retransmission, packet acknowledgment, waking up low power 

network nodes (Beaming) and packet origin authentication. 

Each Z-Wave frame in this layer contains the 32 bits Home ID 

that identifies the associated Z-Wave network, 8 bits source 

node ID, frame header that defines frame type (single-cast, 

multi-cast, routed) and control flag such as low power 

transmission, 8 bits payload length followed by the payload 

and the 8 bits frame checksum value.  Transport layer relies on 

a frame checksum value to detect and discard erroneous 

frames. The Z-Wave protocol uses the following checksum 

algorithm from the ITU-T G.9959 standard:  

  

BYTE GenCheckSum(BYTE *Data,BYTE Length){ 

   BYTE CheckSum = 0xFF; 

   for (; Length > 0; Length--){ 

   CheckSum ^= *Data++;}    

return CheckSum;} 

 

An overview of Z-Wave transport frame format and fields 

is shown in figure 2. Frame retransmission occurs when an 

acknowledgement frame was not received from the destination 

node before the frame expiration time. Beam frames that are 

used to wake up battery powered Z-Wave nodes are controlled 

by the transport layer. Some battery powered Z-Wave devices 

including door locks needs to listen for the incoming 

commands from the network controller, but keeping their radio 

on will drain the battery quickly. In order to preserve the 

battery power, the device enters sleep mode and periodically 

turns on its radio, looking for beam frames. The transmitting 

node sends several back to back beam frames in 100ms 

intervals to ensure that the sleeping device will notice one of 

those frames when waking up and therefore it will keep its 

radio on to receive subsequent transmissions. 

Figure 2 –Z-Force radio transceiver 



 

 

When in secure transmission mode, an 8-byte frame 

authentication header is added to the end of the frame just 

before the frame checksum filed. No public specifications for 

the Z-Wave origin authentication header were available before 

our research. By using Z-Force tool and performing binary 

code analysis of a Z-Wave controller appliance firmware we 

found the cryptographic algorithm and parameters to calculate 

this header value. Z-Wave data origin authentication and 

encryption algorithms are discussed in detail in section III.     

C. Network Layer 

Z-Wave protocol forms a mesh network with one primary 

controller device and up to 232 nodes each of which can act as 

a packet repeater – with the exception of battery powered 

nodes – to route Z-Wave data even when the two 

communicating parties cannot establish a direct radio link 

between each other. In order to determine the best route to a 

destination node, each device in the Z-Wave network maintains 

a network topology that indicates all other devices in 

proximity. When device locations at home changes or they are 

removed from the network, this topology can become wrong 

and cause routing issues in the network. The Z-Wave protocol 

supports automatic topology discovery and healing to detect 

new network location and routes and optimize the routing 

tables. Although, Z-Wave routing mechanism and topology 

discovery might be subjected to attacks such as unauthorized 

modification of routing tables by rouge nodes [8], we did not 

perform security tests in network layer, as our research was 

focused on the encryption and origin authentication that are 

handled by transport and application layers. 

D. Application Layer 

This layer is responsible for parsing the frame payload and 

decoding the Z-Wave commands and supplied parameters. If 

the node was a Z-Wave controller device the decoded 

command and associated parameters will be forwarded to the 

controller software running on the home control computer or 

appliance. Otherwise they will be processed by the device 

firmware that is developed using Z-Wave SDK and running on 

the Z-Wave chip. As demonstrated in figure 2, the payload 

frame starts with one byte command header specifying that the 

command is single/multi or broadcast followed by the 

command class. Z-Wave command classes define device 

functionality such as door lock, alarm sensor, binary sensor, 

heating thermostat and etc. Each command class can consist of 

multiple commands. For instance, 

COMMAND_CLASS_ALARM (defined as 0x71) includes 

CMD_GET (0x04) and CMD_REPORT (0x05), the first of 

which is sent by the controller to the alarm to get the current 

state of the alarm and the second one is sent to the controller 

when the alarm is triggered. The open-zwave project has listed 

command class and command codes for various Z-Wave 

devices. It’s important to note that this list does not contain the 

commands processed by Z-Wave firmware such as network 

topology discovery or network inclusion and exclusion 

commands. 

Using the Z-Force tool we noticed that when home network 

nodes communicate over secure Z-Wave, the frame payload is 

encrypted and followed by 8 bytes authentication field. The 

feature list of the Z-Wave door lock stated that it was using 128 

bits AES encryption, but we observed that the encrypted frame 

payload length is less than the cipher block length (128 bits). 

This suggested that the device has AES algorithm in one of 

Cipher Feedback (CFB) or Output Feedback (OFB) modes that 

can convert block ciphers to variable length stream ciphers. In 

the following section we validate this hypothesis as well as the 

frame authentication algorithm.     

III. VULNERABILITY ANALYSIS 

In order to discover design or implementation 

vulnerabilities in Z-Wave secure communication, it was 

essential to uncover the details of frame encryption and 

authentication algorithms. We analysed the Z-Wave radio 

frames and firmware binary of a home automation appliance in 

the following scenarios: 

a) Door lock inclusion into the Z-Wave network for the 

first time: encryption key exchange takes place between the 

controller appliance and the door lock to establish a shared 

symmetric key. 

b) Sending lock/unlock commands to the Z-Wave door 

lock: the command is encrypted using the established 

encryption key and authentication value is also appended to the 

frame. 

c) Door lock inclusion after controller appliance factory 

rest: The factory reset will erase previously established key 

from the appliance but the door lock will still hold the old 

encryption key. 

Analysis of scenario (a) indicated that the encryption key is 

not exchanged in clear text. This key is generated using the 

hardware based pseudo random number generator (PRNG) on 

Figure 3 –Z-Wave frame format in different layers 



 

 

the Z-Wave chip and then is encrypted by using a hard coded 

temporary default key in chip’s firmware before being sent to 

the door lock. The value of this temporary key was found to be 

16 bytes of zero.  Although an attacker could intercept the 

encrypted key exchange frame, and decipher it using the hard-

coded key this attack vector was not interesting to us, as the 

key exchange only happens at system initial setup time or re-

installation that limits the attack time window. Furthermore Z-

Wave devices can switch their radio to low power transmission 

mode during key exchange process to make packet interception 

attack much more difficult. 

After successful exchange of the network key (��) between 

the controller appliance and the door lock, they both derive two 

new 128-bit keys: frame encryption key (��) and data origin 

authentication key (��) by using AES encryption in ECB 

mode as following: 

 �� = ���-�����
(��		
��) 

�� = ���-�����
(��		
��) 

��		
��  and ��		
�� values were found to be 16-byte 

values hardcoded into the Z-Wave firmware as highlighted in 

Appendix A.   

Z-Wave data origin authentication is based on the cipher 

block chaining message authentication code (CBC-MAC) 

technique that can calculate a message authentication code 

(MAC) from a block cipher algorithm such as AES. The 

generated MAC value ensures that the Z-Wave frame is not 

tampered with or corrupted during the transmission (data 

integrity) and that it has been sent by the node claiming to be 

the message source (origin authentication). In order to prevent 

packet replay attacks, 64-bit nonce values generated by the Z-

Wave chip’s PRNG are used during MAC calculation as 

described by the following formula: 

��� = ���-��������(IV,SH||SRC||DST||LEN||C) 

Initialization vector (IV) is 16 bytes long with bytes zero to 

seven set by the PRNG and bytes 7 to 15 set to the nonce value 

received from the destination node. The security header (SH) is 

a one byte value that determines the type of secure messages: 

nonce request (0x40), nonce reply (0x80) and encrypted data 

(0x81). SRC and DST are the source and destination node IDs, 

LEN is the encrypted payload length in bytes and finally C is 

the encrypted payload bytes that are generated by using AES 

algorithm in OFB mode: 

 

� = ���-����
(IV,P) 

P is the plain text variable size payload that contains Z-

Wave command header, class, ID and parameters. 

With the above knowledge of Z-Wave encryption and 

authentication, we developed a door lock key exchange 

module for the Z-Force tool that enabled us to control all 

steps of the key exchange protocol (Figure 3), run it with 

our own network key and observe the responses from the 

door lock. After running a few tests including scenario (c) 

that was mentioned earlier in this section, we identified a 

critical protocol implementation vulnerability that could 

allow an attacker to reset the established network key on a 

target Z-Wave door lock to a known value of his choice and 

then issue unauthorised commands.  

 

Figure 4 – Key exchange protocol 

The root cause of this issue was lack of state validation 

in the key exchange protocol handler programmed in the Z-

Wave door lock firmware. This handler code is called when 

the door lock receives the key exchange start packet which 

payload is 0x98 0x04 from the home controller device. At 

this point, the handler function needs to load a shared 

encryption key so that it can decrypt the rest of key 

exchange packets received from the controller and be able 

to encrypt its response packets. However before using the 

hardcoded temporary key (16 bytes of zero) for this 

purpose, the door lock should check the state of the current 

shared key in its EEPROM and load the previously 

provisioned network key if one already exists. On contrary, 

we discovered that the Z-Wave door lock does not perform 

this important state validation. As a result, a remote 

attacker who has detailed knowledge of the key exchange 

protocol and is in possession of a Z-Wave packet injection 

tool similar to Z-Force can force the target Z-Wave door 

lock to overwrite its current shared network key with that 

of the attacker. This would enable the attacker to send 

secure Z-Wave messages to perform unauthorised actions 

such as unlocking the door or changing users’ PIN codes.  

We successfully demonstrated this attack against a 128 bit 

AES encrypted door lock using Z-Force kit that was 



 

 

configured to operate in 868.42 MHz frequency and 40Kbps 

data transfer rate. 

I. IMPACT 

Successful exploitation of the aforementioned vulnerability 

can enable an attacker to take full control of the affected Z-

Wave door locks and possibly other secure devices in a 

building. If the compromised door lock attempts to send “Door 

is Open” event to the controller after being unlocked by the 

attacker, the received packet will contain an invalid frame 

authentication field and will be discarded by the controller 

software. Therefore, the home residents or building manager 

will not be alerted about the intrusion. 

II. CONCLUSION 

We have analysed Z-Wave proprietary protocol and 

uncovered the details of its encryption, authentication and key 

exchange protocols. Based on this knowledge we developed a 

low cost Z-Wave packet interception and injection tool that 

enabled us to perform vulnerability discovery on the Z-Wave 

door locks. Using this tool, we have demonstrated an 

implementation vulnerability in Z-Wave key exchange 

protocol that could be exploited to take full control of a target 

Z-Wave door lock by only knowing the Home and node IDs of 

the target device, both of which can be identified by observing 

the Z-Wave network traffic over a short period of time due to 

the frequent polling of devices in a Z-Wave network, for 

example to get status or battery level of the device. This 

vulnerability was not due to a flaw in the Z-Wave protocol 

specification, but because of an implementation error in 

disabling the use of temporary key after initial network key 

exchange during inclusion of a node to the network.  

We have communicated the details of this vulnerability to 

the vendor who has conducted a security review of Z-Wave 

specification and SDK to ensure that they cover correct 

handling of the discovered vulnerability. Finally, Sigma 

Designs has taken action to prevent such implementation flaws 

to reach the market in the future by adding additional security 

test cases to the certification test suite.  

We also recommend Z-Wave device manufacturers to 

examine their firmware code for this vulnerability. Due to the 

flexibility of Z-Force tool, it can also be used to identify other 

vulnerabilities for example memory corruptions in closed 

source Z-Wave firmware via fuzz testing.   
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APPENDIX A. KEY DERIVATION USING HARD-CODED PASSWORD IN A Z-WAVE FIRMWARE 
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